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Phase diagram of a probabilistic cellular automaton with three-site interactions
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We study a1+ 1)-dimensional probabilistic cellular automaton that is closely related to the Domany-Kinzel
stochastic-cellular automatdidKCA), but in which the update of a given site depends on the statere¢
sites at the previous time step. Thus, compared with the DKCA, there is an additional panagrefeesent-
ing the probability for a site to be active at timhegiven that it and its nearest neighbors were active at time
t—1. We study phase transitions and critical behavior for the actaity for damage spreading, using one-
and two-site mean-field approximations, and simulationspfer0 andp;=1. We find evidence for a line of
tricritical points in the p,,p,,p3) parameter space, obtained using a mean-field approximation at pair level.
To construct the phase diagram in simulations we employ the growth-exponent method in an interface repre-
sentation. Fop;=0, the phase diagram is similar to the DKCA, but the damage-spreading transition exhibits
a reentrant phase. Fa;=1, the growth-exponent method reproduces the two absorbing states, first- and
second-order phase transitions, bicritical point, and damage-spreading transition recently identified by Bagnoli
et al. [Phys. Rev. 63, 046116(2001)].
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[. INTRODUCTION dimensional PCA in which the update of a given site depends
on the state of its nearest neighbors and itself, at the preced-
Probabilistic cellular automatdPCA) are widely used to ing time step.(We shall refer to this model as the BPGA.
model systems with local interactions in physics, chemistryThus, compared with the DKCA, there is an additional pa-
biology, and social sciencg4—5]. Despite their simplicity, rameterp; representing the probability for a site to be active
these models exhibit complex behavior and are used to irat timet, given that all three sites were active at timel.
vestigate fundamental problems in statistical mechanicsBagnoli et al. studiedp;=1, in which case the model pre-
such as spin model5,7] and nonequilibrium phenomena sents two absorbing states: the empty one and the completely
[8,9]. In particular, the problem of phase transitions in theoccupied configuration. As in the DKCA, the density is the
presence of absorbing states has attracted increasing interggiier parameter. These authors used the mean-field approxi-
in recent year$10,11]; PCA play a major role in these stud- mation (at site leve), simulations, and field-theoretic argu-
ies[12-198. The PCA introduced by Domany and KinZ8]  ments to study the model. They found a rich phase diagram,
is, along with the contact procefl6,17], one of the simplest  with first- and second-order phase transitions, a bicritical
models exhibiting an absorbing-state phase transition point, and a damage-spreading transition. Except for the line
The one-dimensional Domany-Kinzel stochastic cellularp,=1 in the DKCA, this is the simplest PCA that exhibits a
automaton (DKCA) is a completely discrete system— discontinuous phase transiti¢8y.
temporally, spatially, and in its state space—which attracts |n this work we extend the analysis of the BPCA consid-
interest as a particle system affording a test of ideas on scagring two cases: the previously studipg= 1, which corre-
ing in nonequilibrium critical phenomerfd8]. The DKCA  sponds to a ferromagneticlike model, apg=0, represent-
has a unique absorbirgvacuum”) state; its phase diagram jng a game-of-lifelike model[22,23. We extend the mean-
presents a critical line separating this absorbing phase frofje|ld analysis to the pair level, and use simulations to
an active one. Continuous phase transitions to an absorbingnstruct the phase diagram. In simulations, we apply the
state are conjectured to belong generically to the directegrowth-exponent metho®4] to identify transitions.
percolation(DP) universality clas§19]. In addition to the This paper is structured as follows. In Sec. Il we define
active-absorbing transition, Martingt al. [20] found a the model and its interface representation; the site and pair
damage-spreadin@$) transition separating the active phase mean-field approximations are discussed in Sec. Ill. Simula-

into nonchaotic and chaotic phases. There is numerical eviion results are presented in Sec. IV. We summarize our find-
dence that the critical behavior along this transition line alsqngs in Sec. V.
belongs to the DP class, as expected on the basis of univer-
sality [21].
Recently, Bagnoliet al. [9] introduced a model that can Il. MODEL
be considered a natural extension of the DKCA: a one-
The one-dimensional PCA with three-site neighborhood

(BPCA) was proposed by Bagnatit al. [9]. It consists of a

*Email address: atman@fisica.ufmg.br ring of L sites (=1,2,... L), with periodic boundaries, in
"Email address: dickman@fisica.ufmg.br which each siteé has two possible states, conveniently de-
*Email address: jmoreira@fisica.ufmg.br noted byos;=0,1. The state of the system at tirhés given
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by the sefo;(t)}. In contrast to the deterministic CA studied the resulting scaling properties are unknowrmpriori. Inte-
by Wolfram[1], the present model is a discrete time Markov gration of the local activitywith respect to timgis the most
process: the rules for updating the system are given by tramatural procedure. The present method employs the interface
sition probabilities. In particular, the state of sitat timet representation proposed by de Sad¢sl. [27]. The proce-
+1 depends owr;_4(t), oi(t), ando;,4(t), via the transi- dure consists in transforming the spatiotemporal patterns
tion probability P(oj(t+1)|o;_41(1),0i(t),0i+1(t)). The generated by the PCA to a solid-on-soi80S particle
latter is of totalistic form, i.e., the dependence is throughdeposition. The surface-growth process is attended by kinetic
Si(t)=0,_,(t)+o(t)+0o;..(t). Since S(t)=0 implies roughening; the associated critical exponents can be mea-
oi(t+1)=0 with probability 1, there remain three free pa- sured13] fo]lowing the scaling concepts developed by Fam-
rameters for defining the transition probability. Specifically, ily and Vicsek [28]. Atman and Moreird 24] demonstrated
that the growth exponemg,, exhibits a cusp at criticality, and

P(1]0,0,1)=P(1/0,1,0=P(1]1,0,0=p;, is very useful for detecting phase transitions.
Height variables are defined by summing the variables
P(1]0,1,)=P(1/1,0,)=P(1]1,1,0 =p,, oi(7) over the firstt time steps:
t
PALLH=Pa. h©=3 (. ®

Evidently, P(0|;_41,0,0i,1)=1—P(1|oy_1,0i,0i1).

Depending on the values op{,p,,ps), the asymptotic In this way we generate a growth process, with correlations
(t—) state of the system is either in an absorbing phasembodied in the roughnesg(L,t) [29], defined by
(phase0, with all sites in state 0, gshasel, with all sites in
state }, or in the active phase, in which the stationary den-
sity p of sites in state 1 takes a value different from O or 1.
Complete determination of the phase diagram in the three-
dimensional parameter space is a rather difficult open proh,\,hereﬁ(t) is the mean value offij(t) at timet, and(- - -)
lem. In this work we focus on two caseps=1 andps  denotes an average over realizations.

=0. In the first case, the model possesses the two absorbing For surface-growth mode[29], we expecw(L ,t) to fol-
phases cited above, as well as an active phase and a chagtgv the scaling forn{28]

region(associated with damage spreadirfgprp;=0, phase

1 is no longer absorbinGhough phase 0 of course remains

s0), and there is again an active phase; the chaotic region is W(L,t)~L“f<E>, €)
reentrant.p;=0 describes a situation in which “crowding”
of individuals leads to their destruction, similar to Conway'’s
game-of-life model[22,23, while p;=1 corresponds to a
ferromagneticlike model.

The absorbing-activetransitions are continuous phase
transitions, characterized by critical exponents that belong t
the DP universality class. The phase 0—phase 1 transition
discontinuoug 9], and the exponents are those afmpact
directed percolation. The DS transitions are also in the D
class, consistent with Grassberger’s predicfidh]. The ter-
mination of two critical lines at a line of discontinuous tran-
sitions marks abicritical point, as has been found in the
BPCAforp;=1. Forp;<1, phase 1 is no longer absorbing,

1/ & _
w2<L,t>=E<iE1 [hi<t>—h<t>]2>. @

wheref(u) is a universal scaling functiony is the rough-
ness exponeni=a/p,, the dynamic exponent, ang,, is
the growth exponent. The functidi{u) =const for largeu,
while f(u)~uPw for small u(t<L?). At short times, there-
fore, we expecw(t) ~tAw. It is possible to measurg,, from
the slope of a log-log plot ofv(L,t) versust. In the active
Pphase, the roughness does not saturate, growing instead as
w(L,t)~t¥2 corresponding to uncorrelated growfg4],
since the correlation length is finite, away from the critical
point.

In previous work, Atman and Moreir24] showed that

: . B\ attains a maximum at the phase transition, and measured
so that one of the phase boundaries., between the active its value along the transition line of the DKCA. DP values

ano_l phase 1 abs_orblng th_‘mno Iong_er present, We find . for others critical exponents in the surface representation of
(using the two-site mean-field approximation, discussed I"HKCA are verified in Ref[13]

Sec. Il B) that the bicritical point is actually one terminus of
a line oftricritical points: for each fixegs in the range 1
>pg> pg: 1/3, the absorbing-active transition is discontinu-
ous for (pl,p2)<(pt1,pt2) and continuous for larger values, Martinset al.[20] used the DS technique to show that the
(p1.P2)>(p,ph), where p},pb) is the tricritical point. For ~ active phase _of the DKCA consists of two phase_s_, ch_aotic
pa<p}, the absorbing-active transition is always continu-@nd nonchaotic. The order parameter of this transition is the
difference between two replicas initialized with different
configurations, but subject to the same sequence of random
events during the subsequent evolution. Various prescriptions
have been proposed for generating this random sequence for
The mapping of dynamical systems to a surface-growththe DKCA[24,25. In this work, we use the prescription with
representation is an interesting problem, since in many casesaximal correlations between the random numbers, as used

B. Damage spreading

ous.

A. Surface representation
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TABLE |. BPCA transition probabilities.

oil(ol 40l 0l,) (11D  (1,10,(1,0,0,0r (01D (0,0, (1,00,0r (01,0 (0,00

1 P3 P2 P1 0

0 1-p3 1-p; 1-p; 1
in Refs.[20,24]. The issue of how the DS transition line in Ill. MEAN-FIELD THEORY
the DKCA depends on the detailed prescription is addressed

i A. One-site approximation
in Ref.[26]. site approximati

In practice, we let the system evolve until it attains a To begin, we present the mean-field approximation at the
stationary state, and then copy the configuration, introducingite level, forp;=1 and p;=0, and construct the phase
some alterationgdamage The two replicas, one with state diagram from the equations obtained in this approximation.
oi(t) and the other with state;(t), then evolve using the The BPCAis a Markov process in which all sites are updated
same sequence of random numbers, and the difference bgimultaneously. The configuratidiwr} is a set of stochastic
tween them, variables with the probability distribution at timegiven by

P:(o). The evolution of the latter is governed by
Li(t)=]oi(t)—ei(1)],

Pii1=2 w(alo)Pa), (6)

!
o

is monitored. The fraction of sites in the two replicas with
o, # 0; defines their Hamming distance:
wherew(o|o') denotes the probability of the transitier
1 — o, with the propertieso(o|o')=0 and= w(o|o’)=1.
Du(t)= L Z (D). 4 The transition probability for the BPCA is a product of fac-
tors associated with each site:

The nonchaotic phase is defined as the region of the diagram
in which the stationary Hamming distance vanishes for
(L,t)—o; the chaotic phase is, conversely, the region in
which the Hamming distance diverges in the same limit.

_To study the chaotic-nonchaotic boundary, we USe herew;(q;|o')=0 is the conditional probability for site
slightly different method, in which thelifferencebetween 4 pe active at time+ 1 given the configuration’ at the
the replicas is used to generatsurface-growth proces®S  preceding step. The probabilities, are translationally in-
described above. In this case, variant and in fact depend only on the states;, o;, and

o4 at the previous step:

L
w(alo'){[lwi(oilo'), @)

t
hi<t>=go (7). (5)

wi(ailo")=wgs(oilo{_1,0] ,0{,1). 8

Thus, the profile generated by the difference between th¥Ve list thewss in Table |. _
replicas behaves just as the profiles at the phase O-active Of interest are the-site marginal probabilities. The evo-
boundary: the roughness reaches a stationary value in tHgtion of the one-site distributiof,(c) is given by
nonchaotic phase and grows indefinitely in the chaotic phase,
with a cusp in theB,, value at the transition. _ , .,
Since the system has already relaxed to the stationary Prra(oi) = ,E E, ,Z Was(aio_y,07,07,1)
state when we initiate the damage experiment, creating the Zi-1 % i1
damage by randomly altgring sites in one copy i_s likely to XPyo!_y.0 00, (9)
perturb the particle density and correlation functions away
from their stationary values. This, in turn, would introduce here P.(o b is the marainal distribution for a
an undesirable asymmetry between the replicas, since th (0i-1,07,0711) marg '
dynamics of damage spreading would be mixed with that ofSt of_thr_ee _nea_rest_-nelghbor sites. The evolution of the two-
relaxation back to the stationary stadie the copy but not in site distribution is given by
the origina). To avoid such complications, we generate the
damage byrotating the copy by 180° with respect to the p _ / ro
. . PN i Ti = Wi i107-1:0 ,0;
original, with no further modifications, that isg(i,to) t+1(07,0i11) 2 2 2 2 welailoly0f,0l)
=o(i+L/2}ty), subject to periodic boundary conditions.

! ’ ’
i-1 % Yi+1 Yi+2

This represents a large initial damalgeHamming distance XWas(Ti1]| 0] ,0{ 11,0, 5)
of =2p(1— p), with p the stationary particle densitywhich ) ., ,
is statistically uniform over the system. XPy(0i{_1,07,0741,0742). (10)
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Evidently we have an infinite hierarchy of equations. In theWe can write Eq(12) in a simplified manner,
n-site approximation, the hierarchy is truncated by estimat-

ing the (n-+1)-site (and higher probabilities on the basis of Apri1=a(p*)Apitb(p*)(Apy*+c(Apy)*,

those forn sites. where the coefficienta(p*), b(p*), andc can be associ-
The simplest case is the one-site approximation, in whichated with the stability of the solutions.

P(o{_,,0{,0{,,) Iis factored so: P(oj{_;,0,0/,;) Considering the solutiop* =0, the stability condition is

=Py(0{_1)Pi(0])Py(a{,,). This yields the recurrence rela- a(p*)<1, which impliesp,;<1/3. In the casea(p*)=1,

tion (p1=1/3), the solution will be stable only i(p*)<0 and

€< 0; the first condition impliep;<2/3. Fora(p*)=1 and
pt+1=p3p?+ 3p2pt2(1—pt)+3p1pt(l—pt)2, (11 b(p*)=0, the stability of the conditioc<0 leads top;
<1. Thus, the solutionp* =0 is always stable forp;
wherep,=P(1) is the density of active sitgge., the order <1/3, p,<2/3, and p;<1. The point (1/3,2/3,1) corre-
parametex sponds to a tricritical point in this approximation.
Depending on the value ofpg,p,,ps3), EQg. (11) admits Considering the solutiop™* =1, the stability condition
different stationary solutions, corresponding to the possibl@(p*)<1 implies p;—p,<1/3. In casea(p*)=1 (p3=p2
BPCA phases discussed above: phase®€ (), phase 14 +1/3), the conditionb(p*)<0 yields p,—p;>1/3. For
=1), and active (&p<1). In order to verify the stability a(p*)=1 andb(p*)=0, the stability conditionc<0 im-
of the stationary solutions, we consider a small perturbatiomplies ps;<1. So, the point (1/3,2/3,1) is also a tricritical
in the stationary valug*, p,=p* + Ap,. Applying this vari-  point for the solutionp* =1! Thus, the point (1/3,2/3,1)
able change in Eq(1ll), we obtain for the mean-field ap- corresponds to dicritical point, as Bagnolet al. have al-
proximation at the site level, ready shown. In fact, the solutigs* =1 is absorbing only
o . for p;=1 (since forp;<1, the dynamics of updating de-
Api1=Ap3p™ “(P3+3p1=3p2) +6p™ (P2=2P1) +3P1]  stroys phase)] and this solution is stable fqu,>2/3.

T (Ap)230* (Dat 30:—3D,)+3(Do— 2 For 0<p* <1, the stability conditiora(p*)<1 implies
(Ap0)713p7 (Ps+3p1=3p2) +3(p2 = 2p1)] an inequality of second degree in termspdf. Considering
+(Ap)¥[ps+3p;—3p,]. (12 a=1, we can solve the corresponding equation, and obtain

«_ (2P~ P2) = (P2~ 2p1)°— (P3+3p1—3p,)(3p,— 1)
P P3—3p1—3p2 '

Note thatp* vanishes on the line (1/3,2{8). It is easy to  For p,>2/3 andp,<1/3, we have a discontinuous transition

see that the positive solutigsf is valid for any @1,p2,p3), line separating phase 0 and phasébith stable at p,=1
but the negative solutiop* is valid only forp,<2p;. Con-  —Pa.

sidering the plangp;=1/3, the transition line fop,>2/3 In casepz=0, we have

coincides with the vanishing of the square root, sipde 5

must be real. This implies a discontinuous transition ger pL(3p1—3p2)p~+(3p,—6p1)p+(3p;—1)]=0. (15

>2/3, and the line (1/3,2/B3) corresponds to the tricritical
line in (p1,p2,pP3) space, in the site approximation.
In the simulations we consider two cas@gs=1 andps (1) p=0, frozen phase, stable fgs<1/3, p,<2/3.

=0. Considering the stability analysis above, we can sum- (2) Active phase, valid fop,>1/3 andp; # p,, where the
marize the phase diagram in these two cases in the followingtationary density is given by

way: for p3=1, Eqg.(12) can be written as

For this equation there are only two distinct phases.

6p1—3p,= \9p5— 12p,+ 12
pL(3p1—3pa+1)p°+(3p,—6p1)p+3py—1]=0. p B3Rt Ope— pp kA2,
(13 6p;—6p>
The three solutions of this equation are the following. the negative root is valid fop,<2p;, while the positive

root is valid forp,>2p;.
(1) p=0, phase 0, stable fqy;<1/3. P2~ 2P

(2) p=1, phase 1, stable fqu,>2/3. For p,>2/3, the solution of Eq(16) is either complex or
(3) Active phase, fop,<2/3 andp,>1/3, where the sta- strictly greater than 0, implying discontinuoustransition
tionary density is given by from phase 0 to the active phase, as we anticipate.
The phase diagram in the one-site approximation,pfpr
. 3p;—1 (14 =1, is shown in Fig. 1; that fopz=0 is shown in Fig. 2.
p= 3p;—3p,+1° For p;=1, the phase diagram is as expec{& For ps
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FIG. 1. Phase diagram for the BPCpg=1. One- and two-site
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FIG. 3. Line of tricritical points and the critical surface in the

mean-field approximations are compared with simulation results. (p1.P2,p3) parameter space, as predicted by pair level mean-field

=0, we expect a single absorbing state, but the behavior foq_pproximation. The tricritical line ends nepg=1/3, while at the

p,>2/3, where the transition line is discontinuous,
expected on the basis of simulatiofét the transition the

is nots'te level it extends t@;=0, as shown in Fig. 2.

right-hand side of Eq(16) changes from a complex to a real, Calling z=P(1,1), and noting thaP(1)=P(1,0)+P(1,1),

nonzero valug.

B. Pair approximation

At the pair level, the probabilitp(o|_,0{ ,0{, 1,0],5)
is factored in the following way:

! ! ! !
Puoi_1,07,0{11,0(,,)

_ Pt(o'i,—l’o'i,)Pt(a'i, 10'i,+1)Pt(0'i,+1!0'i,+2)

Pi(o{)P(ais1)

(17)
1.0 U Ay
\\\ p3=0
1
08 | \ ---- site approx. -
H —— pair approx.
| +—— gimulation
06 | i
& Active
Phase 0
04r Phase
02 | E
0.0 ‘ X ‘ .
0.0 0.2 0.4 0.6 0.8 1.0

P4

FIG. 2. Phase diagram for the BPCAz;=0. The mean-field
approximation predicts a tricritical point atp4=2/3, p,=1/3),
where a discontinuous boundafgyashed ling meets a continuous
transition line.

we can write P(1,0)=P(0,1)=p—2z and P(0,0)=1—-2p
+z. The recursion relations for the density of active sjies
and for the density of active paimsare

2
Z; (Zzt (Pt_zt))
=Pa—+Palpi—2)| — +
Pt+1 pspt P2(pi—2) Py 1-p,
2(1-2pi+2z) (pt_zt))
+ -7 + , (18
pulpr2| 22 e BEE

2 (pr—2)%(1—2pi+2)(2—py)
Zi+1= P71 >
pe(1—py)

(pt—2)

m) [2(1—2p+2) + (pi—2)?]

+2p1p2(

pz( z(pi—2)*(1+py)
? pe(1=py)

Zt(pt_zt)) 22t3 (19

+2p2p3(—2 TP33-
Pt Pt

Iterating these relations numerically until a steady state is
reached, we construct the phase diagram in the pair approxi-
mation. Results fop;=1 andp;=0 are shown in Figs. 1
and 2, respectively.

Using the pair approximation, Eq&l8) and(19), we find
numerically the critical surface in the{,p,,p3;) parameter
space and the line of tricritical points, fpg<<1, as sketched
in Fig. 3. In the regionp;<1, phase 1 disappears and the
discontinuous absorbing transition lines meet the continuous
transition lines at the tricritical points, as shown in Fig. 3.
Each one of the eight vertices in this diagram corresponds to
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TABLE Il. Joint transition probabilities for two BPCA subjected to the same noise.

O, Ti (11,1111 (1,1,1;1,1,0 (1,1,1;1,0,0
11 P3 min(p, ps) min(py,ps)

1,0 0 b=max({p,—ps,0) b’ =max(z;—p;,0)
0,1 0 c=max(z;—p,,0) ¢’ =max({;—ps,0)
0,0 1-p3 1—max(p,,ps) 1—max(py,ps)

O, Ti 1,1,1,0,0,0 (1,1,0,1,1,0 (1,1,0;1,0,0
11 0 P2 min(py,p)

1,0 p3 0 b”=max(;—p,,0)
0,1 0 0 ¢”"=max({,—p;,0)
0,0 1-p3 1-p; 1—max(py, po)

O, Ti (1,1,0,0,0,0 (1,0,0;1,0,0 (1,0,0,0,0,0 (0,0,0;0,0,0
11 0 p1 0 0
1,0 P2 0 Py 0
0,1 0 0 0 0
0,0 1-p; 1-p; 1-p; 1

a different deterministic rule in the automata studied by Wol-Hamming distance. Denoting the Hamming distance defined
fram[1]; for example, p;=1, p,=0, p;=0) corresponds to by Eq.(4) as¢;=P,(1;0)=P,(0;1), andusing the relation
the rule 22; p;=1, p,=1, p3=0) to rule 126; etc. (21), we have

C. Damage-spreading transition at site level Yre1=(@(1;0]07-1,07, 01413 T 1,71, Ti+1));

Bagnoliet al.[9] derived a mean-field approximation for using the rules of Table II, we can writg, as
the DS transition ap;=1, showing that there is a chaotic '
region in the active phase of the BPCA. To obtain the one- P.. (1:0)=DaP.(1.1.1:0.0.0+3p-P.(1.1.0:0.0
site approximation for the BPCA gi;=0, we use the ap- t+1(1:0)=P3P(1,1,1;0,0.0+3p,P(1,1,0,0,0.0

proach of Tome[25]; denoting the configurations bjo;} +3(b+c)Py(1,1,1;1,1,0
and{7}, the Hamming distance is given by
+3p,P:(1,0,0;0,0,0
Ht <((T| 7-I) >1 (20) +3(b’+C’)Pt(1,1,1;l,O,Q
where the brackets denote an average over realizations. The +9(b”+c")Py(1,1,0;1,0,0. (23

evolution of the joint probability follows
Setting Py(1)=x;, we can write P{(1;1)=x,—¢; and
N o, L, P(0;0)=1—x;— ¢, thus, using the one-site mean-field ap-
P”l(U’T)_;TW(U’ﬂU TP @D proximation  Py(0y-1,07,014137i-1,7 1 Tis1) = P01,
0i,0i+1)Pi(7_1,7,7i+1), we can write Eq(23) as

where 5 )
1= P Pt + 3Pt (1= X — i) + 3p1(1 =X — i)

W(a;rla';7") +3(b+¢) (X + )2+ 3(b" + ') (X — th)
+9(b"+¢") (X — ) (L= X — ). (24)

:l_i[ w(oy;mlof_,0f ol T, 7 T,

Finally, considering the casp;=0, we have b+c)
=p,, (b'+c’)=p;, and ©"+c”)=|p;—p,|; inserting
these values into Eq24), we obtain

(22

is the transition probability for the two systensubject to
the same noigefrom the state ¢’;7') to (o; 7). Using the _ 2
transition probabilities defined in Table I, we can calculate Yre2=3Ynf3[PL— P2l Y +[(P2~2P1) —3[P1— P

the joint transition probabilities, as shown in Table II. +3(py— P X+ [(P1+ Pa—3|py— p2|)x2
Now, we can write the equations for the evolution of the e !
order parameter associated with the chaotic transition—the +(3|p1— P2 —2p1) X+ P11} (25

016107-6
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0.75 T ] 1.0 ' —
P p,=0.9 0 .
p =l
0.5 3 sl 0
;_ e——e DS transition - simulation
A o= =0 Absorbing iransition simulation < v
Q 035 . N7
06 | L
1 Py /b
- ofo 0.2 04 06 08 107"
0.15 ] oy T T : —10 o
e i
04 | il Hos ‘C;
-0.05 ] | 7 \
0.75 I ' . /// asb o“
- ® \
02f . Site Approximation | o4 ??‘
0.55 e 7 —— DS transition 02
- i —— Absorbing transition
Ve
& 035 %00 0.2 0.4 " 06 0.8 1.0
Py
0.15 FIG. 5. DS transition line, fop;=0. The one-site mean-field
approximation (insey is compared with simulation datémain
0.05 . . graph. Reentrant behavior is observed in both cases.
g 1 1
0.55 =
. p,=0.25 tively. As expected, the pair approximation yields a better
0.45 2 prediction than does one-site mean-field theory. Note that for
0.5 [ p3=0, the phase diagram is qualitatively the same as for the
> 1 DKCA [20,24); the major difference is that the active phase
Q 025 is quite enlarged in the BPCA.
I For p3=1, the pair approximation prediction for the
0.15 | phase boundaries is qualitatively correct, although the bicriti-
0.05 cal point remains in the same positiopy & 1/3,p,=2/3), as
in the site approximation. Simulations place the bicritical
0.05' e 53 point at(0.46((3),0.540(3), but the phase boundaries are in

reasonable agreement with the pair approximation predic-
tion. It is important to note that there are only three transi-

FIG. 4. Density of active sites and Hamming distance, in thetjgns in this diagram: the phase O—phase 1 transitiston-

mean-field approximation, at site level, fpg=0. Note that for
p,>2/3, the transition is discontinuous.

tinuous and the phase O-active and active—phase 1
transitions(continuou$. All transitions are located using the
growth-exponent method, confirming that this method is able

This equation can be iterated numerically using the station-
ary values ofx; obtained from Eq(15); there are three pos-
sibilities for the joint solutions of Eqg15) and (25): x=¢

=0, corresponding to phase =0, ¥+#0, corresponding

to the active phase; and ¢+ 0, corresponding to the cha-
otic phase. In Fig. 4 we show the stationary solutions for
these equations for some valuespf We note that there is

a discontinuous DS transition line in this approximation: for
p>>p: (p2=0.9 in Fig. 4, for example ¢ is always positive .
if x>0. It implies that the DS transition line fqr,> p;, falls o
on the discontinuous transition analyzed in Sec. Il A.

IV. SIMULATION RESULTS

We construct the BPCA phase diagram, foy=0 and
ps=1, using simulations of systems of uplte- 10 000 sites
(with periodic boundaries applying the growth-exponent
method[24] to locate the transition lines. The initial condi-
tion used in the simulations is random, with half the sites

1.0 T T T T
08 | Po=T1 .
06 | 1
04| 1
o2 | — Absorbing transition simulation i
- o—ao DS transition - simulation
0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0

P,

occupied. The phase diagrams for absorbing-state transitions FIG. 6. DS transition line fop;=1. The DS boundary meets

are shown in Figs. 1 and 2, fggz=1 andp;=0, respec-
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' ' ' Hamming distancéproportional to 2* with rotation dam-
age, and to g(t) with random damage Thus, with rotation

—— “rotation” damage ] damage, the exponept, approaches 1 because the system is
"""""" 10 % random damage already in the stationary state, while with the random dam-
age, B,~0.84, due to decay of the activity, recovering the
DP value. This behavior should not be confused withtthe
damage transition that occurs only at the second maximum,
and which corresponds to a unique phase boundary, as shown
in Fig. 6.

In the casep;=0, the simulations confirm the reentrant
chaotic transition predicted by the one-site mean-field ap-
proximation. As shown in Fig. 5, the DS transition line is
concave inward toward the active phase, and presents dis-
tinct behaviors fop;>p, andp;<p,, as expected. We note

' s s that the simulation results suggest a sudden change in the
0.5 0.65 0.7 0.85 0.95 orientation of the active-chaotic phase boundary where the
Pr latter crosses the ling,=p;. Such a discontinuity of slope,

FIG. 7. DS growth exponent for two different initial damages, clearly evident in the mean-field prediction, may be a conse-
for ps=1. The left maximum corresponds to the absorbing transi-quence of the singular behavior of several transition prob-
tion and the right maximum corresponds to the DS transition.  abilities on thep,-p, parameter space, as shown in Table II

and Eq.(25).
to detect both continuous and discontinuous phase transi-
tions.

The phase diagrams for the DS transition are shown in
Figs. 5 and 6, fop;=0 andp;=1, respectively. In the case In this work we apply the growth-exponent method in
ps;=1, we confirm the results of Bagnadit al, but some Monte Carlo simulations, and one- and two-site mean-field
comments are in order. In R¢B], the authors sketched sev- approximations, to construct the phase diagram of the BPCA
eral “damaged domains” that appear along the activefor ps=1 andp;=0. The method detects both first- and
absorbing phase boundary, and attributed them to the divesecond-order phase transitions, and also can be used to locate
gence of the relaxation time, or to the fact that smallDS transitions. The exponent values indicate that all continu-
differences in the initial configuration can drive the system toous phase transitions belong to the directed percolation uni-
a different absorbing state. As shown in Fig. 7, where weversality class, while the exponent at the discontinuous phase
compare the DS transitions obtained usifly “rotation” transition agrees with the compact directed percolation
damage and2) random damage in 10% of the sites, thesevalue.
domains are only associated with the absorbing-state transi- We find evidence of a line of tricritical points in the
tion. We see two maxima in th8,-p; curves in Fig. 7: the (p1,P2,p3) parameter space, using the mean-field pair ap-
left maximum, more pronounced, which corresponds to thgroximations. We also find a reentrant chaotic transition for
absorbing-active transition, and the right maximum, whichp;=0 in the mean-field approximation, which was con-
actually corresponds to the nonchaotic-chaotic transition antirmed by simulations. These observations illustrate the rich,
belongs to the DP class. The left maximum yields an “ap-and at times surprising, phase space structure found in
parent” DS transition, as the “islands” of damage com- simple nonequilibrium systems.
mented upon in Ref9].

Thus, the left maximum corresponds to the damage do-
mains of Ref[9], but in fact it is due to the absorbing-active
transition: in this region, when the replica is creatgdthe We thank Franco Bagnoli and Silvio R. Salinas for help-
stationary state it turns out that only a small region of the ful comments. This work was supported by the Brazilian
ring is active, which results in a constant contribution to theagencies CNPg and Fapemig.
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