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Phase diagram of a probabilistic cellular automaton with three-site interactions
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We study a~111!-dimensional probabilistic cellular automaton that is closely related to the Domany-Kinzel
stochastic-cellular automaton~DKCA!, but in which the update of a given site depends on the state ofthree
sites at the previous time step. Thus, compared with the DKCA, there is an additional parameterp3 represent-
ing the probability for a site to be active at timet, given that it and its nearest neighbors were active at time
t21. We study phase transitions and critical behavior for the activityand for damage spreading, using one-
and two-site mean-field approximations, and simulations, forp350 andp351. We find evidence for a line of
tricritical points in the (p1 ,p2 ,p3) parameter space, obtained using a mean-field approximation at pair level.
To construct the phase diagram in simulations we employ the growth-exponent method in an interface repre-
sentation. Forp350, the phase diagram is similar to the DKCA, but the damage-spreading transition exhibits
a reentrant phase. Forp351, the growth-exponent method reproduces the two absorbing states, first- and
second-order phase transitions, bicritical point, and damage-spreading transition recently identified by Bagnoli
et al. @Phys. Rev. E63, 046116~2001!#.
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I. INTRODUCTION

Probabilistic cellular automata~PCA! are widely used to
model systems with local interactions in physics, chemis
biology, and social sciences@1–5#. Despite their simplicity,
these models exhibit complex behavior and are used to
vestigate fundamental problems in statistical mechan
such as spin models@6,7# and nonequilibrium phenomen
@8,9#. In particular, the problem of phase transitions in t
presence of absorbing states has attracted increasing in
in recent years@10,11#; PCA play a major role in these stud
ies @12–15#. The PCA introduced by Domany and Kinzel@8#
is, along with the contact process@16,17#, one of the simplest
models exhibiting an absorbing-state phase transition

The one-dimensional Domany-Kinzel stochastic cellu
automaton ~DKCA! is a completely discrete system—
temporally, spatially, and in its state space—which attra
interest as a particle system affording a test of ideas on s
ing in nonequilibrium critical phenomena@18#. The DKCA
has a unique absorbing~‘‘vacuum’’ ! state; its phase diagram
presents a critical line separating this absorbing phase f
an active one. Continuous phase transitions to an absor
state are conjectured to belong generically to the direc
percolation~DP! universality class@19#. In addition to the
active-absorbing transition, Martinset al. @20# found a
damage-spreading~DS! transition separating the active pha
into nonchaotic and chaotic phases. There is numerical
dence that the critical behavior along this transition line a
belongs to the DP class, as expected on the basis of un
sality @21#.

Recently, Bagnoliet al. @9# introduced a model that ca
be considered a natural extension of the DKCA: a o
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dimensional PCA in which the update of a given site depe
on the state of its nearest neighbors and itself, at the pre
ing time step.~We shall refer to this model as the BPCA!
Thus, compared with the DKCA, there is an additional p
rameterp3 representing the probability for a site to be acti
at time t, given that all three sites were active at timet21.
Bagnoli et al. studiedp351, in which case the model pre
sents two absorbing states: the empty one and the compl
occupied configuration. As in the DKCA, the density is t
order parameter. These authors used the mean-field app
mation ~at site level!, simulations, and field-theoretic argu
ments to study the model. They found a rich phase diagr
with first- and second-order phase transitions, a bicriti
point, and a damage-spreading transition. Except for the
p251 in the DKCA, this is the simplest PCA that exhibits
discontinuous phase transition@9#.

In this work we extend the analysis of the BPCA cons
ering two cases: the previously studiedp351, which corre-
sponds to a ferromagneticlike model, andp350, represent-
ing a game-of-life-like model @22,23#. We extend the mean
field analysis to the pair level, and use simulations
construct the phase diagram. In simulations, we apply
growth-exponent method@24# to identify transitions.

This paper is structured as follows. In Sec. II we defi
the model and its interface representation; the site and
mean-field approximations are discussed in Sec. III. Simu
tion results are presented in Sec. IV. We summarize our fi
ings in Sec. V.

II. MODEL

The one-dimensional PCA with three-site neighborho
~BPCA! was proposed by Bagnoliet al. @9#. It consists of a
ring of L sites (i 51,2, . . . ,L), with periodic boundaries, in
which each sitei has two possible states, conveniently d
noted bys i50,1. The state of the system at timet is given
©2003 The American Physical Society07-1
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ATMAN, DICKMAN, AND MOREIRA PHYSICAL REVIEW E 67, 016107 ~2003!
by the set$s i(t)%. In contrast to the deterministic CA studie
by Wolfram @1#, the present model is a discrete time Mark
process: the rules for updating the system are given by t
sition probabilities. In particular, the state of sitei at time t
11 depends ons i 21(t), s i(t), ands i 11(t), via the transi-
tion probability P„s i(t11)us i 21(t),s i(t),s i 11(t)…. The
latter is of totalistic form, i.e., the dependence is throu
Si(t)5s i 21(t)1s i(t)1s i 11(t). Since S(t)50 implies
s i(t11)50 with probability 1, there remain three free p
rameters for defining the transition probability. Specifical

P~1u0,0,1!5P~1u0,1,0!5P~1u1,0,0!5p1 ,

P~1u0,1,1!5P~1u1,0,1!5P~1u1,1,0!5p2 ,

P~1u1,1,1!5p3 .

Evidently, P(0us i 21 ,s,s i 11)512P(1us i 21 ,s i ,s i 11).
Depending on the values of (p1 ,p2 ,p3), the asymptotic

(t→`) state of the system is either in an absorbing ph
~phase0, with all sites in state 0, orphase1, with all sites in
state 1!, or in the active phase, in which the stationary de
sity r of sites in state 1 takes a value different from 0 or
Complete determination of the phase diagram in the th
dimensional parameter space is a rather difficult open p
lem. In this work we focus on two cases:p351 and p3
50. In the first case, the model possesses the two absor
phases cited above, as well as an active phase and a ch
region~associated with damage spreading!. Forp350, phase
1 is no longer absorbing~though phase 0 of course remai
so!, and there is again an active phase; the chaotic regio
reentrant.p350 describes a situation in which ‘‘crowding
of individuals leads to their destruction, similar to Conway
game-of-life model@22,23#, while p351 corresponds to a
ferromagneticlike model.

The absorbing-activetransitions are continuous phas
transitions, characterized by critical exponents that belon
the DP universality class. The phase 0–phase 1 transitio
discontinuous@9#, and the exponents are those ofcompact
directed percolation. The DS transitions are also in the
class, consistent with Grassberger’s prediction@21#. The ter-
mination of two critical lines at a line of discontinuous tra
sitions marks abicritical point, as has been found in th
BPCA for p351. Forp3,1, phase 1 is no longer absorbin
so that one of the phase boundaries~i.e., between the active
and phase 1 absorbing phases! is no longer present. We find
~using the two-site mean-field approximation, discussed
Sec. III B! that the bicritical point is actually one terminus
a line of tricritical points: for each fixedp3 in the range 1
.p3.p3

t .1/3, the absorbing-active transition is discontin
ous for (p1 ,p2),(p1

t ,p2
t ) and continuous for larger values

(p1 ,p2).(p1
t ,p2

t ), where (p1
t ,p2

t ) is the tricritical point. For
p3<p3

t , the absorbing-active transition is always contin
ous.

A. Surface representation

The mapping of dynamical systems to a surface-gro
representation is an interesting problem, since in many c
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the resulting scaling properties are unknowna priori. Inte-
gration of the local activity~with respect to time! is the most
natural procedure. The present method employs the inter
representation proposed by de Saleset al. @27#. The proce-
dure consists in transforming the spatiotemporal patte
generated by the PCA to a solid-on-solid~SOS! particle
deposition. The surface-growth process is attended by kin
roughening; the associated critical exponents can be m
sured@13# following the scaling concepts developed by Fa
ily and Vicsék @28#. Atman and Moreira@24# demonstrated
that the growth exponentbw exhibits a cusp at criticality, and
is very useful for detecting phase transitions.

Height variables are defined by summing the variab
s i(t) over the firstt time steps:

hi~ t ![(
t50

t

s i~t!. ~1!

In this way we generate a growth process, with correlatio
embodied in the roughnessw(L,t) @29#, defined by

w2~L,t !5
1

L K (
i 51

L

@hi~ t !2h̄~ t !#2L , ~2!

where h̄(t) is the mean value ofhi(t) at time t, and ^•••&
denotes an average over realizations.

For surface-growth models@29#, we expectw(L,t) to fol-
low the scaling form@28#

w~L,t !;La f S t

LzD , ~3!

where f (u) is a universal scaling function,a is the rough-
ness exponent,z5a/bw the dynamic exponent, andbw is
the growth exponent. The functionf (u)5const for largeu,
while f (u);ubw for small u(t!Lz). At short times, there-
fore, we expectw(t);tbw. It is possible to measurebw from
the slope of a log-log plot ofw(L,t) versust. In the active
phase, the roughness does not saturate, growing instea
w(L,t);t1/2, corresponding to uncorrelated growth@24#,
since the correlation length is finite, away from the critic
point.

In previous work, Atman and Moreira@24# showed that
bw attains a maximum at the phase transition, and meas
its value along the transition line of the DKCA. DP value
for others critical exponents in the surface representation
DKCA are verified in Ref.@13#.

B. Damage spreading

Martinset al. @20# used the DS technique to show that t
active phase of the DKCA consists of two phases, cha
and nonchaotic. The order parameter of this transition is
difference between two replicas initialized with differe
configurations, but subject to the same sequence of ran
events during the subsequent evolution. Various prescript
have been proposed for generating this random sequenc
the DKCA@24,25#. In this work, we use the prescription wit
maximal correlations between the random numbers, as u
7-2
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TABLE I. BPCA transition probabilities.

s i /(s i 218 ,s i8 ,s i 118 ) ~1,1,1! ~1,1,0!, ~1,0,1!, or ~0,1,1! ~0,0,1!, ~1,0,0!, or ~0,1,0! ~0,0,0!
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in Refs. @20,24#. The issue of how the DS transition line i
the DKCA depends on the detailed prescription is addres
in Ref. @26#.

In practice, we let the system evolve until it attains
stationary state, and then copy the configuration, introduc
some alterations~damage!. The two replicas, one with stat
s i(t) and the other with state% i(t), then evolve using the
same sequence of random numbers, and the difference
tween them,

G i~ t !5us i~ t !2% i~ t !u,

is monitored. The fraction of sites in the two replicas w
s iÞ% i defines their Hamming distance:

DH~ t !5
1

L (
i

G i~ t !. ~4!

The nonchaotic phase is defined as the region of the diag
in which the stationary Hamming distance vanishes
(L,t)→`; the chaotic phase is, conversely, the region
which the Hamming distance diverges in the same limit.

To study the chaotic-nonchaotic boundary, we use
slightly different method, in which thedifferencebetween
the replicas is used to generate asurface-growth process, as
described above. In this case,

hi~ t !5 (
t50

t

G i~t!. ~5!

Thus, the profile generated by the difference between
replicas behaves just as the profiles at the phase 0–a
boundary: the roughness reaches a stationary value in
nonchaotic phase and grows indefinitely in the chaotic ph
with a cusp in thebw value at the transition.

Since the system has already relaxed to the station
state when we initiate the damage experiment, creating
damage by randomly altering sites in one copy is likely
perturb the particle density and correlation functions aw
from their stationary values. This, in turn, would introdu
an undesirable asymmetry between the replicas, since
dynamics of damage spreading would be mixed with tha
relaxation back to the stationary state~in the copy but not in
the original!. To avoid such complications, we generate t
damage byrotating the copy by 180° with respect to th
original, with no further modifications, that is,%( i ,t0)
5s( i 1L/2,t0), subject to periodic boundary condition
This represents a large initial damage@a Hamming distance
of .2r(12r), with r the stationary particle density#, which
is statistically uniform over the system.
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III. MEAN-FIELD THEORY

A. One-site approximation

To begin, we present the mean-field approximation at
site level, for p351 and p350, and construct the phas
diagram from the equations obtained in this approximati
The BPCA is a Markov process in which all sites are upda
simultaneously. The configuration$s% is a set of stochastic
variables with the probability distribution at timet given by
Pt(s). The evolution of the latter is governed by

Pt115(
s8

v~sus8!Pt~s8!, ~6!

wherev(sus8) denotes the probability of the transitions8
→s, with the propertiesv(sus8)>0 and(sv(sus8)51.
The transition probability for the BPCA is a product of fa
tors associated with each site:

v~sus8!5)
i 51

L

wi~s i us8!, ~7!

wherewi(s i us8)>0 is the conditional probability for sitei
to be active at timet11, given the configurations8 at the
preceding step. The probabilitieswi are translationally in-
variant and in fact depend only on the statess i 21 , s i , and
s i 11 at the previous step:

wi~s i us8!5w3s~s i us i 218 ,s i8 ,s i 118 !. ~8!

We list thew3s in Table I.
Of interest are then-site marginal probabilities. The evo

lution of the one-site distributionPt(s i) is given by

Pt11~s i !5 (
s i 218

(
s i8

(
s i 118

w3s~s i us i 218 ,s i8 ,s i 118 !

3Pt~s i 218 ,s i8 ,s i 118 !, ~9!

where Pt(s i 218 ,s i8 ,s i 118 ) is the marginal distribution for a
set of three nearest-neighbor sites. The evolution of the t
site distribution is given by

Pt11~s i ,s i 11!5 (
s i 218

(
s i8

(
s i 118

(
s i 128

w3s~s i us i 218 ,s i8 ,s i 118 !

3w3s~s i 11us i8 ,s i 118 ,s i 128 !

3Pt~s i 218 ,s i8 ,s i 118 ,s i 128 !. ~10!
7-3
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Evidently we have an infinite hierarchy of equations. In t
n-site approximation, the hierarchy is truncated by estim
ing the (n11)-site~and higher! probabilities on the basis o
those forn sites.

The simplest case is the one-site approximation, in wh
Pt(s i 218 ,s i8 ,s i 118 ) is factored so: Pt(s i 218 ,s i8 ,s i 118 )
5Pt(s i 218 )Pt(s i8)Pt(s i 118 ). This yields the recurrence rela
tion

r t115p3r t
313p2r t

2~12r t!13p1r t~12r t!
2, ~11!

wherer t[Pt(1) is the density of active sites~i.e., the order
parameter!.

Depending on the value of (p1 ,p2 ,p3), Eq. ~11! admits
different stationary solutions, corresponding to the poss
BPCA phases discussed above: phase 0 (r50), phase 1 (r
51), and active (0,r,1). In order to verify the stability
of the stationary solutions, we consider a small perturba
in the stationary valuer* , r t5r* 1Dr t . Applying this vari-
able change in Eq.~11!, we obtain for the mean-field ap
proximation at the site level,

Dr t115Dr t@3r* 2~p313p123p2!16r* ~p222p1!13p1#

1~Dr t!
2@3r* ~p313p123p2!13~p222p1!#

1~Dr t!
3@p313p123p2#. ~12!
l

m
in
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We can write Eq.~12! in a simplified manner,

Dr t115a~r* !Dr t1b~r* !~Dr t!
21c~Dr t!

3,

where the coefficientsa(r* ), b(r* ), and c can be associ-
ated with the stability of the solutions.

Considering the solutionr* 50, the stability condition is
a(r* ),1, which impliesp1,1/3. In the casea(r* )51,
(p151/3), the solution will be stable only ifb(r* ),0 and
c,0; the first condition impliesp3,2/3. Fora(r* )51 and
b(r* )50, the stability of the conditionc,0 leads top3
,1. Thus, the solutionr* 50 is always stable forp1
,1/3, p2,2/3, and p3,1. The point (1/3,2/3,1) corre
sponds to a tricritical point in this approximation.

Considering the solutionr* 51, the stability condition
a(r* ),1 implies p32p2,1/3. In casea(r* )51 (p35p2
11/3), the conditionb(r* ),0 yields p22p1.1/3. For
a(r* )51 and b(r* )50, the stability conditionc,0 im-
plies p3,1. So, the point (1/3,2/3,1) is also a tricritica
point for the solutionr* 51! Thus, the point (1/3,2/3,1)
corresponds to abicritical point, as Bagnoliet al. have al-
ready shown. In fact, the solutionr* 51 is absorbing only
for p351 ~since for p3,1, the dynamics of updating de
stroys phase 1!, and this solution is stable forp2.2/3.

For 0,r* ,1, the stability conditiona(r* ),1 implies
an inequality of second degree in terms ofr* . Considering
a51, we can solve the corresponding equation, and obt
r* 5
~2p12p2!6A~p222p1!22~p313p123p2!~3p121!

p323p123p2
.

n
Note thatr* vanishes on the line (1/3,2/3,p3). It is easy to
see that the positive solutionr1* is valid for any (p1 ,p2 ,p3),
but the negative solutionr2* is valid only forp2,2p1. Con-
sidering the planep151/3, the transition line forp2.2/3
coincides with the vanishing of the square root, sincer*
must be real. This implies a discontinuous transition forp2
.2/3, and the line (1/3,2/3,p3) corresponds to the tricritica
line in (p1 ,p2 ,p3) space, in the site approximation.

In the simulations we consider two cases:p351 andp3
50. Considering the stability analysis above, we can su
marize the phase diagram in these two cases in the follow
way: for p351, Eq. ~12! can be written as

r@~3p123p211!r21~3p226p1!r13p121#50.
~13!

The three solutions of this equation are the following.

~1! r50, phase 0, stable forp1,1/3.
~2! r51, phase 1, stable forp2.2/3.
~3! Active phase, forp2,2/3 andp1.1/3, where the sta-

tionary density is given by

r5
3p121

3p123p211
. ~14!
-
g

For p2.2/3 andp1,1/3, we have a discontinuous transitio
line separating phase 0 and phase 1~both stable! at p251
2p1.

In casep350, we have

r@~3p123p2!r21~3p226p1!r1~3p121!#50. ~15!

For this equation there are only two distinct phases.

~1! r50, frozen phase, stable forp1,1/3, p2<2/3.
~2! Active phase, valid forp1.1/3 andp1Þp2, where the

stationary density is given by

r5
6p123p26A9p2

2212p2112p1

6p126p2
; ~16!

the negative root is valid forp2,2p1, while the positive
root is valid forp2.2p1.

For p2.2/3, the solution of Eq.~16! is either complex or
strictly greater than 0, implying adiscontinuoustransition
from phase 0 to the active phase, as we anticipate.

The phase diagram in the one-site approximation, forp3
51, is shown in Fig. 1; that forp350 is shown in Fig. 2.
For p351, the phase diagram is as expected@9#. For p3
7-4
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50, we expect a single absorbing state, but the behavior
p2.2/3, where the transition line is discontinuous, is n
expected on the basis of simulations.@At the transition the
right-hand side of Eq.~16! changes from a complex to a rea
nonzero value.#

B. Pair approximation

At the pair level, the probabilityPt(s i 218 ,s i8 ,s i 118 ,s i 128 )
is factored in the following way:

Pt~s i 218 ,s i8 ,s i 118 ,s i 128 !

5
Pt~s i 218 ,s i8!Pt~s i8 ,s i 118 !Pt~s i 118 ,s i 128 !

Pt~s i8!Pt~s i 118 !
.

~17!

FIG. 1. Phase diagram for the BPCA,p351. One- and two-site
mean-field approximations are compared with simulation result

FIG. 2. Phase diagram for the BPCA,p350. The mean-field
approximation predicts a tricritical point at (p252/3, p151/3),
where a discontinuous boundary~dashed line! meets a continuous
transition line.
01610
or
t

Calling z[P(1,1), and noting thatP(1)5P(1,0)1P(1,1),
we can write P(1,0)5P(0,1)5r2z and P(0,0)[122r
1z. The recursion relations for the density of active sitesr
and for the density of active pairsz are

r t115p3

zt
2

r t
1p2~r t2zt!S 2zt

r t
1

~r t2zt!

12r t
D

1p1~r t2zt!S 2~122r t1zt!

12r t
1

~r t2zt!

r t
D , ~18!

zt115p1
2S ~r t2zt!

2~122r t1zt!~22r t!

r t~12r t!
2 D

12p1p2S ~r t2zt!

r t~12r t!
D @zt~122r t1zt!1~r t2zt!

2#

1p2
2S zt~r t2zt!

2~11r t!

r t
2~12r t!

D
12p2p3S zt

2~r t2zt!

r t
2 D 1p3

2
zt

3

r t
2

. ~19!

Iterating these relations numerically until a steady state
reached, we construct the phase diagram in the pair appr
mation. Results forp351 andp350 are shown in Figs. 1
and 2, respectively.

Using the pair approximation, Eqs.~18! and~19!, we find
numerically the critical surface in the (p1 ,p2 ,p3) parameter
space and the line of tricritical points, forp3,1, as sketched
in Fig. 3. In the regionp3,1, phase 1 disappears and th
discontinuous absorbing transition lines meet the continu
transition lines at the tricritical points, as shown in Fig.
Each one of the eight vertices in this diagram correspond

FIG. 3. Line of tricritical points and the critical surface in th
(p1 ,p2 ,p3) parameter space, as predicted by pair level mean-fi
approximation. The tricritical line ends nearp3.1/3, while at the
site level it extends top350, as shown in Fig. 2.
7-5
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TABLE II. Joint transition probabilities for two BPCA subjected to the same noise.

s i ,t i ~1,1,1;1,1,1! ~1,1,1;1,1,0! ~1,1,1;1,0,0!

1,1 p3 min(p2, p3) min(p1,p3)
1,0 0 b5max(p22p3,0) b85max(p32p1,0)
0,1 0 c5max(p32p2,0) c85max(p12p3,0)
0,0 12p3 12max(p2,p3) 12max(p1,p3)

s i ,t i 1,1,1;0,0,0 ~1,1,0;1,1,0! ~1,1,0;1,0,0!

1,1 0 p2 min(p1,p2)
1,0 p3 0 b95max(p12p2,0)
0,1 0 0 c95max(p22p1,0)
0,0 12p3 12p2 12max(p1, p2)

s i ,t i ~1,1,0;0,0,0! ~1,0,0;1,0,0! ~1,0,0;0,0,0! ~0,0,0;0,0,0!

1,1 0 p1 0 0
1,0 p2 0 p1 0
0,1 0 0 0 0
0,0 12p2 12p1 12p1 1
ol

r
ic
ne

T

t

he
th

ned

p-
a different deterministic rule in the automata studied by W
fram @1#; for example, (p151, p250, p350) corresponds to
the rule 22; (p151, p251, p350) to rule 126; etc.

C. Damage-spreading transition at site level

Bagnoli et al. @9# derived a mean-field approximation fo
the DS transition atp351, showing that there is a chaot
region in the active phase of the BPCA. To obtain the o
site approximation for the BPCA atp350, we use the ap-
proach of Tome´ @25#; denoting the configurations by$s i%
and$t i%, the Hamming distance is given by

Ht5^~s i2t i !
2&, ~20!

where the brackets denote an average over realizations.
evolution of the joint probability follows

Pt11~s;t!5(
s,t

W~s;tus8;t8!Pt~s8;t8!, ~21!

where

W~s;tus8;t8!

5)
i

Ã~s i ;t i us i 218 ,s i8 ,s i 118 ;t i 218 ,t i8 ,t i 118 !,

~22!

is the transition probability for the two systems~subject to
the same noise!, from the state (s8;t8) to (s;t). Using the
transition probabilities defined in Table I, we can calcula
the joint transition probabilities, as shown in Table II.

Now, we can write the equations for the evolution of t
order parameter associated with the chaotic transition—
01610
-

-
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e

e

Hamming distance. Denoting the Hamming distance defi
by Eq. ~4! asc t[Pt(1;0)5Pt(0;1), andusing the relation
~21!, we have

c t115^Ã~1;0us i 21 ,s i ,s i 11 ;t i 21 ,t i ,t i 11!&;

using the rules of Table II, we can writec t as

Pt11~1;0!5p3Pt~1,1,1;0,0,0!13p2Pt~1,1,0;0,0,0!

13~b1c!Pt~1,1,1;1,1,0!

13p1Pt~1,0,0;0,0,0!

13~b81c8!Pt~1,1,1;1,0,0!

19~b91c9!Pt~1,1,0;1,0,0!. ~23!

Setting Pt(1)[xt , we can write Pt(1;1)5xt2c t and
Pt(0;0)512xt2c t ; thus, using the one-site mean-field a
proximation Pt(s i 21 ,s i ,s i 11 ;t i 21 ,t i ,t i 11)5Pt(s i 21 ,
s i ,s i 11)Pt(t i 21 ,t i ,t i 11), we can write Eq.~23! as

c t115c t@p3c t
213p2c t~12xt2c t!13p1~12xt2c t!

2

13~b1c!~xt1c t!
213~b81c8!c t~xt2c t!

19~b91c9!~xt2c t!~12xt2c t!#. ~24!

Finally, considering the casep350, we have (b1c)
5p2 , (b81c8)5p1, and (b91c9)5up12p2u; inserting
these values into Eq.~24!, we obtain

c t1153c t$3up12p2uc t
21@~p222p1!23up12p2u

13~p12p2!xt#c t1@~p11p223up12p2u!xt
2

1~3up12p2u22p1!xt1p1#%. ~25!
7-6
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This equation can be iterated numerically using the stat
ary values ofxt obtained from Eq.~15!; there are three pos
sibilities for the joint solutions of Eqs.~15! and ~25!: x5c
50, corresponding to phase 0;x50, cÞ0, corresponding
to the active phase; andx,cÞ0, corresponding to the cha
otic phase. In Fig. 4 we show the stationary solutions
these equations for some values ofp2. We note that there is
a discontinuous DS transition line in this approximation:
p2.pt (p250.9 in Fig. 4, for example!, c is always positive
if x.0. It implies that the DS transition line forp2.pt falls
on the discontinuous transition analyzed in Sec. III A.

IV. SIMULATION RESULTS

We construct the BPCA phase diagram, forp350 and
p351, using simulations of systems of up toL510 000 sites
~with periodic boundaries!, applying the growth-exponen
method@24# to locate the transition lines. The initial cond
tion used in the simulations is random, with half the si
occupied. The phase diagrams for absorbing-state transi
are shown in Figs. 1 and 2, forp351 and p350, respec-

FIG. 4. Density of active sites and Hamming distance, in
mean-field approximation, at site level, forp350. Note that for
p2.2/3, the transition is discontinuous.
01610
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r

r

s
ns

tively. As expected, the pair approximation yields a bet
prediction than does one-site mean-field theory. Note that
p350, the phase diagram is qualitatively the same as for
DKCA @20,24#; the major difference is that the active pha
is quite enlarged in the BPCA.

For p351, the pair approximation prediction for th
phase boundaries is qualitatively correct, although the bic
cal point remains in the same position (p151/3,p252/3), as
in the site approximation. Simulations place the bicritic
point at„0.460(3),0.540(3)…, but the phase boundaries are
reasonable agreement with the pair approximation pre
tion. It is important to note that there are only three tran
tions in this diagram: the phase 0–phase 1 transition~discon-
tinuous! and the phase 0–active and active–phase
transitions~continuous!. All transitions are located using th
growth-exponent method, confirming that this method is a

FIG. 5. DS transition line, forp350. The one-site mean-field
approximation ~inset! is compared with simulation data~main
graph!. Reentrant behavior is observed in both cases.

FIG. 6. DS transition line forp351. The DS boundary meet
the absorbing transition lines for (p1 ,p2) near 1.

e

7-7



n

e

-
ve
ive
a
t

w

s
n

th
ich
an
p
-

d
e

e
h

is
m-
e

um,
own

nt
ap-
is
dis-

e
the

the
,
se-
ob-
II

in
eld
CA
d

ocate
nu-
uni-
ase
ion

e
ap-
for
n-
ich,

in

lp-
an

s,
s

ATMAN, DICKMAN, AND MOREIRA PHYSICAL REVIEW E 67, 016107 ~2003!
to detect both continuous and discontinuous phase tra
tions.

The phase diagrams for the DS transition are shown
Figs. 5 and 6, forp350 andp351, respectively. In the cas
p351, we confirm the results of Bagnoliet al., but some
comments are in order. In Ref.@9#, the authors sketched sev
eral ‘‘damaged domains’’ that appear along the acti
absorbing phase boundary, and attributed them to the d
gence of the relaxation time, or to the fact that sm
differences in the initial configuration can drive the system
a different absorbing state. As shown in Fig. 7, where
compare the DS transitions obtained using~1! ‘‘rotation’’
damage and~2! random damage in 10% of the sites, the
domains are only associated with the absorbing-state tra
tion. We see two maxima in thebw-p1 curves in Fig. 7: the
left maximum, more pronounced, which corresponds to
absorbing-active transition, and the right maximum, wh
actually corresponds to the nonchaotic-chaotic transition
belongs to the DP class. The left maximum yields an ‘‘a
parent’’ DS transition, as the ‘‘islands’’ of damage com
mented upon in Ref.@9#.

Thus, the left maximum corresponds to the damage
mains of Ref.@9#, but in fact it is due to the absorbing-activ
transition: in this region, when the replica is created~in the
stationary state!, it turns out that only a small region of th
ring is active, which results in a constant contribution to t

FIG. 7. DS growth exponent for two different initial damage
for p351. The left maximum corresponds to the absorbing tran
tion and the right maximum corresponds to the DS transition.
a
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Hamming distance@proportional to 2r* with rotation dam-
age, and to 2r(t) with random damage#. Thus, with rotation
damage, the exponentbw approaches 1 because the system
already in the stationary state, while with the random da
age,bw;0.84, due to decay of the activity, recovering th
DP value. This behavior should not be confused with thetrue
damage transition that occurs only at the second maxim
and which corresponds to a unique phase boundary, as sh
in Fig. 6.

In the casep350, the simulations confirm the reentra
chaotic transition predicted by the one-site mean-field
proximation. As shown in Fig. 5, the DS transition line
concave inward toward the active phase, and presents
tinct behaviors forp1.p2 andp1,p2, as expected. We not
that the simulation results suggest a sudden change in
orientation of the active-chaotic phase boundary where
latter crosses the linep25p1. Such a discontinuity of slope
clearly evident in the mean-field prediction, may be a con
quence of the singular behavior of several transition pr
abilities on thep1-p2 parameter space, as shown in Table
and Eq.~25!.

V. CONCLUSIONS

In this work we apply the growth-exponent method
Monte Carlo simulations, and one- and two-site mean-fi
approximations, to construct the phase diagram of the BP
for p351 and p350. The method detects both first- an
second-order phase transitions, and also can be used to l
DS transitions. The exponent values indicate that all conti
ous phase transitions belong to the directed percolation
versality class, while the exponent at the discontinuous ph
transition agrees with the compact directed percolat
value.

We find evidence of a line of tricritical points in th
(p1 ,p2 ,p3) parameter space, using the mean-field pair
proximations. We also find a reentrant chaotic transition
p350 in the mean-field approximation, which was co
firmed by simulations. These observations illustrate the r
and at times surprising, phase space structure found
simple nonequilibrium systems.
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